

Heterogeneity, Reservoir Characterization and Integrated Simulation Modeling for Miocene Carbonate Reservoir - Ras Fanar Field – Gulf of Suez

- SUCO/EGPC
- Nasser Atta (Geophysical Ass. General Mng.)
- Mohamed Samir (Reservoir Engineer)
- Under supervision: Geo. Wegdan A. Saleh
- Asst. Chairman for Exploration & Board member

Ras Fanar Field Overview

- Ras Fanar Oil Field Is Located Offshore Of The Western Side Of The G.O.S Some 3.5 Km. East Of Ras Gharib Shoreline In A Water Depth Of About 100 Ft.
- Ras Fanar Had Been Discovered In 1978 By The Exploratory Well Kk 84-1.
- The Well Penetrated 400 Ft Of Carbonate Oil Bearing Interval Of Bealyim "Nullipore" Formation.
- Production Has Been Started On January 1984.

Ras Fanar Field Overview

RAS FANAR FIELD Generalized Stratigraphic Column

	AGE	FORMATION	LITH.	AVER. THICKNESS IN FEET	LITHOLOGIC DISCRIPTION
	HOLOCENE - PLIOCENE	POST ZEIT	0 0 0 0 # # #	1200	SD LAMINATED WITH CLAY AND Dolomitic LST. Streaks in Parts
	UPPER MIOCENE	ZEIT		620	ANHYDRITE WITH SHALE INTERCALATIONS AND OCCASIONALLY SAND STRINKERS
		S.GHARIB	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	240	EVAPORITE W/OCC. LAMIN OF SH & DOL. LST
	MIDDLE MIOCENE	BELAYIM (NULLIPORE ROCK)		400 - 980	ALGAL REEFAL DOLOMITIC LST BUILD UP , ANHYDRITIC IN PARTS
	EOCENE	THEBES		0 ±120	LST. WITH SHALE STKS , MAINLY CHERTY
	PALEOCENE	ESNA		0 - 50	SHALE WITH LST STKS
	SENONIAN	SUDR		0 - 340	CRMY WH CHLKY LST
		BRN. LST		0 - 50 400 - 500	BRN LST. WITH CARB. MATT SHALE WITH S.ST & LST STKS SH : GY, BLKY, SLTY, SNDY, SL-NON CALC S.ST: GYSH WH, F-MD GRD, SL ARG. LST.: OFF WH, MD HD CRYPTOXLN.
	TURONIAN	WATA		240	LST. WITH SHALE STREAKS, HIGHLY GLAUCONITIC & W / CARB. MATT.
	CENOMANIAN	RAHA		180	SH WITH LST & S.ST STKS
	ALBIAN	NUBIA (A)		230	S.ST WITH KAOLINITE STKS
	PALEOZOIC	NUBIA (B)		420	KAOLINITIC SHALE WITH S.ST STKS
		NUBIA (C+D)		420	S.ST WITH BLACK & REDISH SHALE
	PRECAMBRIAN	BASEMENT	+ + + + + + + + + + + +		
	Legend: San	dstone	Limestone	● ● Fossile Frogments	
@ 2450'			Z	Not deposited	
	Anh	ydrite	Chalk	++++ Basement	
	to e org	anic Rich	onerty		

Ras Fanar Map (Top Nullipore Formation) 2014

Ras Fanar Reserves Updating

Patch Reef

Is small and circular in shape, it may • provide shelter of a lagoon on its lee ward side.

Type Section Of "Nullipore"

- Type Section Reflects The Shallow Marine Warm Water Conditions That Favourable For Reefal Development.
- This Carbonate Reveal A Multi-scale Heterogenity System
- To Understanding How To Deal With Our Reservoir It Must Be Investigate The Surface Outcrop.
- It Is Proved That The Structure Setting , Some Facies And Coralline Algae Are Similar To Those Present In Esh El Malaha, Gulf Of Suez.

"Nullipore" Zonation

- The Petrographical And Sedimentological Evaluations Through The Description Of 60core Samples Representing 1600 Ft, Reveal That The "Nullipore" Can Be Subdivided Into 8 Lithofacies Zones Underlain By Basal Bed .
- NumperZone VIIISandy mudstone to wackestone (biomicrite)Zone VIIMolluscan Dolomitic packstone (molluscan biomicrite)Zone VIFossiliferous packstone to boundstone (algal biomicrite)Zone VDeeply-weathered dolomitic wackestone to packstone
(biomicrite)Zone IVFossiliferous dolomitic wackestone to packstone
(biomicrite)Zone IIIFossiliferous dolomitic wackestone to packstone
(algal biomicrite)Zone IIIAnhydritic fossiliferous packstone to packstone
(algal biomicrite)Zone IIIAnhydritic dolomitic wackestone to packstone
(algal biomicrite)Zone IIAnhydritic fossiliferous packstone to packstone
(algal biomicrite)

"Nullipore" Petrographical And Sedimentological **Evaluations** ZONE VIII

Algal mudstone (P.P.L.)

Bryzoan fragment, open intercrystalline pores (P.P.L.)

Intrcrystalline and intracrystalline pore space within Fine crystalline dolorhobs (P.P.L.)

ANHYDRITIC FOSSILIFEROUS PACKSTONE (**BIOMICRITE**)

Algal oncoid and fragment (Lithophyllym sp.) with anhydrite rosettes grow within the dolomitic lime matrix (Crossed Nicoles)

Intergranular pores and vuggs partially filled with fine to medium celestite crystal (p.p.l.)

ANHYDRITIC DOLOMITIC WACKESTONE TO **PACKSTONE (ALGAL BOMICRITE)**

ZONE VI

Algal fragment with anhydrite partially filled vuggs (Crossed Nicoles)

Anhydrite filing microfracture

Large algal oncoide **Partially leaching** in LST with open litho- and bioclast pores and microvugs result in open moldic and vuggs (P.P.L.)

ANHYDRITIC ALGAL PACKSTONE TO BOUNDSTONE (ALGAL BIOMICRITE)

"Nullipore" Petrographical And Sedimentological Evaluations

ZONE V

Partially leaching of Bryzoa, Borelis melo, smale gastropodes and Amphistigina sp. embeded in adolomitic matrix

Completely leaching of coralline fragment with anhydrite fillings (P.P.L.)

ZONE VI

Algal fragment with anhydrite partially filled vuggs (Crossed Nicoles)

Anhydrite filing microfracture

Large algal oncoide in LST with open pores and microvugs

Partially leaching lithoand bioclast result in open moldic and vuggs (P.P.L.)

Algal oncoide with open internal pores, vuggs & microfracture (*Lithothamnium.* Sp.) (P.P.L.)

Secondary anhydrite fillings transicted by an open fracture

FOSSILIFEROUS DOLOMITIC WACKESTONE TO PACKSTONE (BIOMICRITE)

ANHYDRITIC ALGAL PACKSTONE TO BOUNDSTONE (ALGAL BIOMICRITE)

FOSSILIFEROUS PACKSTONE TO BOUNDSTONE (ALGAL BIOMICRITE)

ZONE III

"Nullipore" Petrographical And Sedimentological Evaluations

ZONE I

A vug partially filled with celectite

Photomicrograph showing cluster of Subangular to subrounded decrial quartz grains within the dolomicrite matrix

Bands of polymectic conglomerate

SANDY ANHYDERITIC MUDSTONE TO WACKESTONE (BIOMICRITE)

Completely leaching Molluscan fragments

Completely leaching of Bryzoan and coral fragments (partially filled with anhydrite) and Molluscan remains resulting in open moldic cavity and vuggs (P.P.L.)

Anhydrite nodular

MOLLUSCAN DOLOMITIC PACKSTONE (MOLLUSCAN BIOMICRITE)

"Nullipore" Digenetic Processes and effect on Porosity

• It Comprises Several Digenetic Processes (Pre-uplift) And (Post-uplift) That Largely Affected The Reservoir Properties.

Those Digenetic Processes Led To:-

- Either Porosity-destructive.
- Or Porosity-constructive.

They Has Resulted In An Extremely Heterogeneous Reservoir Rock.

"Nullipore" Digenetic Processes

DIAGENESIS

Recrystallization

Dissolution & Leaching

Cavity Filling

Dolomitization

"Nullipore" Porosity

POROSITY TYPES

"Nullipore" Zonation and associated Porosity

ZONE VI

ZONE VII

ZONE VIII

"Nullipore" Zonation and associated Porosity

ZONE III

ZONE IV

ZONE V

Matrix	Biomoldic Cavity	^y 🗖 Vuggs
Microfracture	Intercrystalline	Intracrystalline

"Nullipore" Zonation and associated Porosity

The distribution of coralline algae together with the fancies characters get a good information about the paleopathymetry of that carbonate.

The "Nullipore" Can Be Divided (From Bottom To Top) Into 3RegressiveSequences(A,BAndCRespectively)WITH RESPECT TO RESERVOIR ZONEATIONS.

starts with inner-ramp packstones and passes upwards into a restricted inner ramps.

 Sequence B (Zones VI and V) indicates mainly open marine (inner neritic) environment having a water depth less than 30m.
Some wells show a complete regressive sequence of inner – to mid - ramp.

Sequence C (Zones IV, III, II and I) suggests deposition in a predominantly inner - ramp environment.

NW-SE SKETCH SECTION TO ILLUSTRATE APPROXIMATE LOCATION OF CORED SECTIONS, FACIES ASSOCIATIONS AND DEPOSITIONAL SEQUENCES A, B AND C WITH RESPECT TO RESERVOIR ZONEATIONS.

CORRELATION CHART FOR "NULLIPORE" USING E- LOGS

Seismic and Geological cross section passing through NNW to SSE

core porosity/permeability cross-plot Porosity ~20-30 Permiabity ~ 250

CORE POROSITY/PERMEABILITY CROSS-PLOT

Porosity ~20-35 Permiabity ~ 1000

Core Porosity/Permeability Cross-plot Porosity ~20-30 Permiabity ~ 300

DEW13-0

DEW13-03

818000

DEW13.01

DENVS

DEW13

DEN 12.02

816000

DEN

DEW13-03

Ras Fanar Field Highlight

Main Points:

- Main Area from 84 to 96
- ESP Project in 96
- West Discovery in 2004
- Second Phase Development in 2010
- Arresting field Decline in 2017

Cumulative Production 119 MMstb

West Area Discovery

- SUCO decided to drill an exploratory well on 2004, in the western part of the lease area to appraise the Nullipore reservoir extension in the highly faulted block which was interpreted from 3D seismic interpretation.
- This discovery open a new major window to the west of the lease with the calculated oil reserve of 16 MMSTB.
- The development of this part of the lease was started from this time till now to approved this oil potentiality and the Nullipore reservoir extension.

Challenges of First Phase Development

RF-B10 Performance

2000

RF-A8b Performance

مركة السريس للزيد

How to Proceed with the Development?

Integrated Reservoir Study

Property Distribution

Permeability Distribution

Porosity Distribution

Average Oil Saturation

Ras Fanar Acoustic Impedance Distribution

Second Phase Development Plan

Challenge The Reservoir Heterogeneity

Action:

➢Using Seismic Data

Using Reservoir Simulation Model

Long Well Path Through Payzone

Second Phase Development Plan

Challenge: Limited payzone thickness.

Action: Drilling of Horizontal Wells is the Best Suitable Well Design.

Challenge: Limited Well Slots on Platform.

Action: Sidetrack the Almost Watered Out Wells

Second Phase Development Plan

Challenge: The Sharp Increase of Water Cut Experienced in the Phase I.

<u>Action</u>: Production Optimization for the Artificial Lift of New Wells

General Challenges: Water Coning, Asphaltene, Paraffin's and Waxes Production.

Infill Wells Selected Based on

Drainage Area Based on top Reservoir and top Perforation.

➢ Highest Area in Reservoir.

➤Cut More Distance in Oil and Gas Zones.

Better Locations Near Faults .

Well Planning

Example: RF-B6a

38

West Area Performance

Cumulative Production from West Area reached 11.5 MMstb